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Abstract: This work presents the use of longitudinal refractive index
modulation (apodization) in photosensitive glass for improved sidelobe
suppression in volume holographic optical elements. We develop a numer-
ical model for both uniform and apodized volume holograms based on
rigorous coupled-wave analysis. We validate the model by comparison with
a transmissive 1.55-µm uniform volume grating in photothermorefractive
glass. We then apply our numerical model to calculate the spectral response
of apodized gratings. The numerical results demonstrate that apodization
of the refractive index modulation envelope improves spectral selectivity
and reduces first and second-order side-lobe peaks by up to 33 and 65
dB, respectively. We suggest a method for creating apodization in volume
holograms with approximately Gaussian spatial refractive index profile.

© 2004 Optical Society of America

OCIS codes: (090.2890) Holographic optical elements; (090.7330) Volume holographic grat-
ings;  (220.1230) Apodization; (260.2110) Electromagnetic theory

References and links
1. A.D. Cohen, M.C. Parker, R.J. Mears, “100-GHz-resolution dynamic holographic channel management for

WDM,” IEEE Phot. Tech. Lett., 11, 851-3 (1999).
2. D.C. O’Brien, R.J. Mears, T.D. Wilkinson and W.A. Crossland, ”Dynamic holographic interconnects that use

ferroelectric liquid-crystal spatial light modulators”, Appl. Opt. 33, 2795-2803 (1994).
3. A. Marrakchi and K. Rastani, ”Free-space holographic grating interconnects”, Photonics Switching and Inter-

connects, A. Marrakchi (ed.), Marcel Dekker, New York, 249-321 (1994).
4. P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holz, S. Liberman, H.Q.

Nguyen, D.P. Resler, R.C. Sharp and E.A. Watson, ”Optical phased array technology”, Proc. of the IEEE 84,
268-298 (1996).

5. O.M. Efimov, L.B. Glebov, L.N. Glebova, K.C. Richardson, and V.I. Smirnov, ”High-efficiency Bragg gratings
in photothermorefractive glass”, Appl. Opt. 38, 619-27 (1999).

6. I.V. Ciapurin, L.B. Glebov, L.N. Glebova, V.I. Smirnov and E.V. Rotari, ” Incoherent combining of 100-W Yb-
fiber laser beams by PTR Bragg grating”, In Advances in Fiber Devices, L. N. Durvasula, Editor, Proceedings of
SPIE 4974, 209-219 (2003).

7. S. Tao and G.W. Burr, ”Performance optimization of volume gratings with finite size through numerical simula-
tion”, CLEO/IQEC and PhAST Technical Digest (Optical Society of America, Washington, DC, 2004), CTuE5.

8. T. K. Gaylord and M.G. Moharam, ”Planar Dielectric Grating Diffraction Theories”, Appl. Phys. B 28, 1-14
(1982).

9. L.B. Glebov, “Kinetics modeling in photosensitive glass,” Optical Materials 25, 413-418 (2004).

(C) 2004 OSA 27 December 2004 / Vol. 12,  No. 26 / OPTICS EXPRESS  6642
#5752 - $15.00 US Received 23 November 2004; revised 16 December 2004; accepted 16 December 2004

mailto:jtsui@uml.edu


10. M.G. Moharam and T.K. Gaylord, ”Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc.
Am. 71, 811-818 (1981).

11. T.K. Gaylord and M.G. Moharam, ”Analysis of optical diffraction by gratings”, Proc. of the IEEE 73, 894-937
(1985).

12. K. Radhakrishnan and A.C. Hindmarsh, ”Description and use of LSODE, the Livermore Solver for Ordinary
Differential Equations”, NASA reference publication 1327 (1993).

13. G.D. Byrne and A.C. Hindmarsh, ”Stiff ODE solvers: A review of current and coming attractions”, J. Comp.
Phys. 70, 1-62 (1987).

1. Introduction

Several practical applications exist in optical communications for holographic optical elements.
The narrow-band diffractive property of holograms can be exploited in wavelength-division
multiplexed optical systems as channel-drop filters and equalizers [1] and as reconfigurable
multi-wavelength optical cross-connect switches [2, 3]. Holographic elements also enable a
lightweight, wavelength-selective alternative to mechanical gimbals for optical beam-steering
in free-space optical communications [4]. As an extension of this approach, a cascade of mul-
tiple holograms in series could enable a single aperture to independently steer multiple users
contained within a wavelength-multiplexed beam. Furthermore, volume holograms enable syn-
thesis of advanced filter shapes that cannot be easily achieved with interference filters. In ad-
dition to dynamic, spatial light modulator approaches to generating holograms, experimental
demonstrations of fixed, sinusoidal volume holograms in photothermorefractive (PTR) glass
show these gratings achieve diffraction efficiencies near 100%, accomodate high power, and
exhibit low loss at communication wavelengths near 1.55 µm [5, 6].

An area for further investigation involves improving the spectral response of sinusoidal vol-
ume gratings. A typical transmissive uniform volume grating with ∼1-mm thickness exhibits
sidelobes and a response that decays by approximately -20 dB per 15 nm at 1.55 µm. We
propose the use of apodization of the refractive index modulation amplitude to enhance the
stop-band rejection of a volume grating. The use of apodization (or spatially non-uniform cou-
pling) in gratings has also recently been proposed in Ref. [7]. They have provided numerical
results for the spectral response of gratings apodized with a Sinc-profile using integration of
approximate coupled-wave equations for finite beams. In this work, we address the problem of
oblique plane-wave diffraction from an apodized volume grating using a rigorous derivation of
the coupled-wave equations stemming from analysis developed by Gaylord and Moharam [8].
We develop a numerical solution for the set of coupled-wave equations governing the spatial
variation of the electric field, and validate our numerical solution with measurements of an ex-
perimental uniform grating device. We then apply our numerical approach to calculating the
spectral response of apodized gratings. The use of a Gaussian profile for apodization is found
to allow considerable side-lobe suppression in the grating’s spectral response, while preserving
the main-lobe bandwidth. We show through numerical calculations that first and second-order
side-lobe peaks can be reduced by 33 and 65 dB, respectively. This improvement corresponds
to a stop-band response with 80 dB of suppression at a detuning of under 0.7% relative to the
grating’s center wavelength. A simple model for fabrication of nearly Gaussian spatial index
profile is accomplished by exploiting spectral properties [5] and kinetics of refractive index
modification [9] in PTR glass.

The content of the remainder of this paper includes the derivation of the coupled-wave equa-
tions for an apodized grating in Section 2. In Section 3 we describe our numerical solution
approach and in Section 5 we present the results of our numerical solution. A summary of our
work and conclusions are given in Section 6.
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2. Coupled-wave equations

In this section we present the derivation of the coupled-wave equations for wave propagation
through an apodized grating. The grating and its bounding media are assumed to be linear and
isotropic. The evolution of the electric field, Ē, is given by the following vector-wave equation.

∇ 2Ē + ∇ ·
(

Ē · ∇ ε
ε

)
−µε

∂ 2Ē
∂ t2 = 0 (1)

The permeability µ assumes its free-space value µ0, and the permittivity ε(x,z) = ε0ε̃(x,z)
varies with position. The quantity ε0 is the value of permittivity in free-space, and ε̃(x,z) is the
relative permittivity of the medium. Our analysis here considers only the H-mode polarization
of the electric field. The electric field is expressed as a time-harmonic transverse wave with
frequency ω: Ē = ŷEy(x,z)e− jωt , where ŷ is the unit vector in the y-direction. This expression
for the electric field forces the second term of Eq. (1), ∇ · (Ē · ∇ ε/ε), to be identically zero.
Applying this time-harmonic form of the electric field to Eq. (1) results in the following scalar
Helmholtz equation for Ey(x,y),

∇ 2Ey(x,z)+ k2ε̃(x,z)Ey(x,z) = 0 (2)

where k = ω(µ0ε0)1/2 is the magnitude of the free-space wave-number, and λ = 2π/k is the
corresponding free-space wavelength.

In our analysis we consider the problem of a planar dielectric grating bound between different
homogeneous media, as illustrated in Fig. 1. The dielectric grating is characterized by a relative
permittivity, ε̃2, that is a superposition of constant and varying components:

ε̃2(x,z) = ε̃20 + ε̃21(z)cos[K̄ · x̄] (3)

In Eq. (3) x̄ = (x y z)T is the position vector, and K̄ = K(sinφ 0 cosφ)T is the grating vector.
The angle φ is the grating slant angle and K = 2π/Λ is the magnitude of the grating vector,
with the grating period Λ. The quantities ε̃20 and ε̃21 denote the mean relative permittivity and
the amplitude of the modulated relative permittivity. The spatial variation of the quantity ε̃21(z)
provides apodization of the sinusoidal modulation of the permittivity.

We are interested in accurately computing the forward and backward propagating diffracted
fields that result from a plane wave at oblique incidence to the planar grating. We therefore
employ a representation of the solution in terms of the diffracted orders, proposed by Gaylord
and Moharam [8, 10, 11]. Following the analysis of Gaylord and Moharam, the electric field
inside the grating is expressed as a superposition of spatial harmonics with phase k̄2m · x̄ and
amplitude, Sm(z).

E2y(x,z) =
+∞

∑
m=−∞

Sm(z)exp(− jk̄2m · x̄) (4)

The spatial harmonics are parameterized by their wave-vectors, k̄2m = k̄2 −mK̄, where k̄2

is the reference wave-vector with magnitude k(ε̃20)1/2 and m is the integral spatial harmonic
index. Substituting Eq. (4) into the scalar Helmholtz equation, Eq. (2), results in the set of
second-order coupled ordinary differential equations for the amplitudes Sm(z),

S
′′
m +∑

n
amn S

′
n +∑

n
bmn Sn = 0 (5)
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Fig. 1: Diffraction from a planar dielectric grating bounded by homogeneous media.

where ()
′

denotes a derivative with respect to z. The coefficients amn and bmn are defined as:

amn =
{ −2 j(k̄2n · ẑ) if n = m

0 if n �= m
(6)

bmn =




[k2
2 − (k̄2n · x̂)2 − (k̄2n · ẑ)2] n = m

k2ε̃21(z)/2 n = m−1 or n = m+1
0 otherwise

(7)

x̂ and ẑ are unit vectors in the x and z directions respectively. The electric field in Regions 1 and
3 are given below.

E1y = exp(− jk̄1 · x̄)+
∞

∑
m=−∞

Rm exp(− jk̄1m · x̄) (8)

E3y =
∞

∑
m=−∞

Tm exp(− jk̄3m · (x̄−dẑ)) (9)

The x-components of the wave-vectors k̄1m and k̄3m are obtained by applying phase matching
conditions:

(k̄1m · x̂) = (k̄2m · x̂) = (k̄3m · x̂) (10)
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The magnitudes of the wave-vectors in the Regions 1 and 3 are k1 = |k̄1| = |k̄1m| = k(ε̃10)1/2

and k3 = |k̄3| = |k̄3m| = k(ε̃30)1/2, respectively. The z-components of the wave-vectors k̄1m and
k̄3m are therefore given as:

(k̄1m · ẑ) = −[
k2

1 − (k̄2m · x̂)2]1/2

(k̄3m · ẑ) = +
[
k2

3 − (k̄2m · x̂)2]1/2
(11)

The quantities Rm in Eq. (8) are amplitudes of the backward-propagating diffracted orders,
and Tm in Eq. (9) are the amplitudes of the forward-propagating orders. These amplitudes are
specified by conditions on the electrical and magnetic fields at the grating boundaries. The
continuity of the tangential electrical and magnetic fields at z = 0 and z = d yields the following
relations:

(Ē)t(z = 0) : Sm(0)−δ0m = Rm (12)

(H̄)t(z = 0) : − j[k2
1 − (k̄2m · x̂)2]1/2(δ0m −Rm) = S

′
m(0)− j(k̄2m · ẑ)Sm(0) (13)

(Ē)t(z = d) : Sm(d)exp[− j(k̄2m · ẑ)d] = Tm (14)

(H̄)t(z = d) : j[S
′
m(d)− j(k̄2m · ẑ)Sm(d)]exp[− j(k̄2m · ẑ)d] = (k̄3m · ẑ)Tm (15)

We use the notation ()t to denote the vector component tangential to the grating surface, and
δ0m is the Kronecker delta function. The Eqs. (11-14) simplify to the following equations which
are independent of Rm and Tm:

S
′
m(0)− j

{
(k̄2m · ẑ)+

[
k2

1 − (k̄2m · x̂)2]1/2
}

Sm(0) = −2 j
[
k2

1 − (k̄2m · x̂)2]1/2 δ0m (16)

S
′
m(d)− j

[
(k̄2m · ẑ) − (k̄3m · ẑ)]Sm(d) = 0 (17)

The electric field inside the grating (Region 2) can be obtained by calculating the amplitudes
Sm(z) by solving Eq. (5), subject to the boundary conditions in Eqs. (16-17).

3. Numerical solution

Our main interest is in examining the coupling between the spatial harmonics Sm(z) which
results in transfer of energy from the incident wave to the forward propagating diffracted orders.
It is apparent from Eq. (5) that the coupling between the spatial harmonics is mediated by
the modulated component of the relative permittivity ε̃21(z)cos(K̄ · x̄) (see equation (3)). In
the following we show that appropriate selection of the functional form for ε̃21(z) allows the
spectral selectivity of a sinusoidal grating to be significantly enhanced.

The spatial dependence of the amplitude ε̃21(z) renders Eq. (5) inhomogeneous. A general
analytic solution to the inhomogeneous coupled differential equations is non-trivial. In this sec-
tion we seek a numerical solution for the coupled inhomogeneous differential equations that
govern the amplitudes Sm(z). The numerical results presented here are limited to a single func-
tional form for ε̃21(z). In order to discuss our solutions in terms of familiar optical quantities,
we replace relative permittivities with refractive indices. This is accomplished by rewriting Eq.
(3) as

ε̃20 + ε̃21(z)cos[K̄ · x̄] ≈ n2
20 +2n20n21 f (z)cos[K̄ · x̄] (18)

where n20 is the mean refractive index in, n21 is the relative amplitude for the modulated com-
ponent of the refractive index, and f (z) is the apodization function. In this study we employ
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the Gaussian function G(z;α ,σq) to describe the apodization f (z). The function G(z;α ,σq) is
given as:

G(z;α ,σq) = exp

[
− (z−α )2

2σ2
q

]
(19)

where α = d/2 and σq = d/(2q). The quantity q is a tuning parameter for the apodization
function.

In order to numerically analyze the spectral response of an apodized grating we proceed by
specifying parameters for a volume grating designed for operation at 1.55 µm. We employ a
transmission grating with a slant angle φ = 90o. The mean refractive index of the grating is
n20 = 1.5 and amplitude of the modulated component of refractive index is n21 = 0.64×10−3.
For convenience we set mean refractive indices in the bounding media to be the same as that of
the grating: n10 = n30 = 1.5. We are interested in the grating’s spectral response about the center
wavelength λ0 = 1565 nm. The angle θ2 of the incident wave satisfies the Bragg condition:

cos(φ−θ2) =
K

2k2
(20)

In order to proceed further with our numerical solution we must specify the number of
harmonics need to accurately represent the electric field. The number of spatial harmonics
M = M2 −M1 +1 is calculated from the minimum and maximum spatial harmonic indices M1

and M2 selected, where M1 ≤ m ≤ M2. The values of M1 and M2 required for an accurate rep-
resentation of the solution can be gleaned by examining the eigenmodes of the homogeneous
problem, where f (z) = 1. The solution to the homogeneous problem can be expressed as

Sm(z) = ∑
i

CiΦimexp(γiz) (21)

where γi is the i-th eigenvalue, Φim is the i-th element of the m-th eigenvector and Ci is one
of a set of unknown coefficients determined by applying the boundary conditions in Eqs. (16-
17). We find that increasing the number of spatial harmonics M produces modes that do not
significantly contribute to the solution. For the grating parameters of interest here, we find that
two spatial harmonics are sufficient to accurately describe the solution, i.e. M1 = 0 and M2 = 1.

The inhomogeneous coupled differential equations for Sm(z) {M1 ≤ m ≤ M2} are integrated
by a solver that employs the numerical integrator lsode [12]. The standard lsode integrator
solves initial value problems. A boundary value problem solver is fashioned by applying a
shooting method in concert with lsode. The shooting method is used to adjust the estimated
initial value at z = 0 so that the outputs of the lsode will satisfy the boundary conditions at
z = d with desired accuracy. The differential equations given in Eqs. (5-7) pose some difficulty
for the integration code. For the optical parameters parameters of interest equations Eqs. (5-
7) form a system of stiff [13] ordinary differential equations. The term stiff refers to a large
disparity in the spatial scale of solutions admitted by the differential equations. A comparison of
the magnitude of terms in Eqs. (5-7) reveals the highest derivative terms are O(1/d2), while the
lowest derivative terms are O(k2

2). This difference in the magnitude of terms yields eigenvalues
for the homogeneous problem ( f (z) = 1)) that differ in magnitude by O(104). The consequence
of this disparity is that the numerical integration of the differential equations requires step-
sizes that adequately sample the fast spatial scale, albeit the dominant term in the solution
corresponds to the slow spatial scale.
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4. Approach for approximating Gaussian refractive index apodization in PTR glass

Lateral apodization can be performed by apodizing the intensity of recording beams. Apodiza-
tion in the longitudinal direction relies on the photo-induced refractive index increment ap-
proaching saturation in a smooth manner. This allows for a two-step process where the primary
exposure depletes the photo-sensitivity achievable in the secondary exposure. For example,
a uniform holographic pattern can be generated by exposure with a transparent wavelength,
while an apodizing exposure can be applied using a second absorbing wavelength. Dependence
of induced refractive index increment for the cumulative exposure is described by a hyperbolic
function as noted by Glebov previously [9]. We express the resultant refractive index increment
achieved by with a two-exposure process by

∆n =
∆nmaxE
E +E

, (22)

where ∆n is the refractive index increment, E is the uniform hologram exposure energy in
J/cm2, ∆nmax is the maximum refractive index increment, and E is the half-max dosage. Typical
values of photosensitivity parameters for PTR glass are ∆nmax = 0.7×10−3, E = 500 mJ/cm2.
The resultant refractive index increment in the presence of a background exposure, Eb, can now
be expressed as

∆n = ∆nmax

(
Eb +E

E +Eb +E
− Eb

E +Eb

)
. (23)

Fig. 2 shows dependence of refractive index increment for the exposure at the hologram
recording wavelength for different background exposure levels. These experimental results
show that ∆n can be varied by approximately an order of magnitude. The wavelength for ultra-
violet exposure is usually chosen in the region of low absorption to provide a uniformity with
depth. A background exposure can be applied using a shorter wavelength that experiences sig-
nificant absorption within the photosensitive material. If such exposure is applied to both front
(z=0) and back (z=d) surfaces then the distribution of absorbed energy along the longitudinal
direction is

Eb = Ebi [exp(−Az)+ exp(A(z−d))] = EbiB(z), (24)

where Ebi is the incident background dosage and A is the absorption coefficient. We assume
that photosensitivity does not depend on wavelength and no additional absorption occurs at the
operational wavelength. Now, a substitution of Eq. (24) into Eq. (23) yields

∆n = ∆nmax

(
EbiB(z)+E

E +EbiB(z)+E
− EbiB(z)

E +EbiB(z)

)
(25)

For a photosensitive plate of known thickness, varying the parameters of wavelength, back-
ground dosage level, and main dosage level afford a variety of spatial profiles in the refractive
index increment. Fig. 3 shows that an approximation to the Gaussian profile in the refractive
index increment can be achieved in a 4-mm thick photosensitive plate. This profile corresponds
to an absorption coefficient of 6.4 cm−1 at a wavelength of 250 nm for PTR glass [5]. Illumina-
tion at this wavelength can be provided by a filtered Xe-lamp or by higher harmonics of visible
or infrared lasers. This approach extends to lateral apodization which allows for fabrication of
holograms with complex spatial profiles for the refractive index modulation.
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Fig. 2: Dependence of refractive index increment for the second exposure of PTR glass to UV radiation at 325 nm.
Kinetics parameters are ∆nmax = 0.7×10−3 and E = 0.5 J/cm2.

5. Results

In this section we discuss the results obtained from the numerical solution of Eqs. (5-7), subject
to the boundary conditions in Eqs. (16-17). We begin by examining the solution for a uniform
grating ( f (z) = 1). In Fig. 4 we present the variation in the magnitude of the diffracted order
S1(d), with the grating thickness d. The coupling between spatial harmonics S0 and S1 results
in a cyclical exchange of energy between the two modes as the grating thickness d increases.
The value of d = dmax at which |S1(d)| reaches its first maximum indicates the interaction
length required for maximum diffraction efficiency. A grating of thickness dmax acts as a band-
reject filter for S0 (the reference wave) such that a selected band of wavelengths about λ0 are
rejected and all others are passed. For S1 (the diffracted wave) the grating acts as a band-
pass filter which transmits a band of wavelengths about λ0 and rejects wavelengths outside the
passband. In Fig. 5 we present the response of S0(dmax) and S1(dmax) as a function of λ . This
figure compares numerically computed results with experimental measurements of a uniform
grating device. We perform this comparison to validate our numerical model. A grating written
in photothermorefractive glass [5, 6] is employed for our experimental measurements. For the
experiment, a beam from a tunable laser, collimated to a 12 mm 1/e2-diameter, was incident on
the grating at the Bragg-matching angle of incidence. Optical power meters were placed on each
side of the grating to measure the reference and diffracted intensities. The power meters were
positioned to measure the S0 and S1 diffracted orders. The laser was tuned over wavelengths
from 1555 to 1575 nm to measure the dependence of |S0|2 and |S1|2 versus λ . The experimental
spectral response of the grating is found to closely match the numerically computed response,
as shown in Fig. 5. The spectral response for |S1(dmax)|2 exhibits a passband centered at λ =
1565 nm and an envelope of |S1(dmax)|2 that decays by approximately −20 dB over 15 nm as
seen in Fig. 5.
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Fig. 3: Distribution of refractive index increment in depth of PTR glass after two step exposure to UV radiation at 325
and 250 nm with dosages of 0.7 and 0.6 J/cm2, respectively. The red line is a Gaussian function with half-width of 0.2
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To develop gratings with sharper rolloff, we now examine the results for apodized grat-
ings which are computed through the numerical solution of an inhomogeneous problem.
Fig. 6 shows the variation in the magnitude of the diffracted order S1 as function of d for
f (z) = G(z,α ,σq), with {q = 1 . . .4}. For convenience we denote G(z,α ,σq) by Gq. We note
that the coupling strength between the reference and the diffracted orders near the grating
boundaries is reduced as the value of apodization tuning parameter q is raised. The presence of
apodization slows the exchange of energy between the reference and diffracted orders, requir-
ing a longer interaction length to achieve maximal diffraction efficiency. The spectral response
of S1, for a set of tuning parameters {q = 1 . . .4} is plotted in Fig. 7. The results are compared
with the spectral response for the case f (z) = 1. For each spectral response plotted in Fig. 7,
the value dmax corresponds to the thickness at which |S1|2 reaches a maximum. The results in
Fig. 7 show a progressively greater suppression of the stop-band response for increasing q. In
the case of q = 4, the first and second-order side-lobe peaks are further reduced by 33 and 65
dB, respectively, yielding a stop-band rejection exceeding 80 dB at λ0 ±15 nm.

6. Summary and conclusions

In this work we have presented the use of apodization for enhancing the stop-band rejection
of volume gratings. We have followed a rigorous approach in our analysis for the problem
of plane wave diffraction by apodized gratings. The analysis yields a set of inhomogeneous
coupled-wave differential equations that govern the spatial variation of the electric field in the
grating. We have developed a numerical approach to compute the solution of this set of cou-
pled differential equations. This numerical model has been confirmed by measurements of an
experimental uniform volumetric grating in photothermorefractive glass.

Using our numerical approach, we have computed the spectral response of volume gratings
for a set of Gaussian apodization profiles. Our results have shown that such apodized gratings
can achieve high diffraction efficiency for thicknesses under 4 mm. Recent experimental efforts
suggest that gratings with thicknesses of 5 mm with n21 of O(10−3) are realizable in photother-
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Fig. 5: The spectrum of |S0(dmax)|2 and |S1(dmax)|2 for f (z) = 1.
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Fig. 7: The spectrum of |S1(dmax)|2 for uniform and apodized gratings.
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morefractive glass. We have shown significant suppression of side-lobe peaks while preserving
the main-lobe shape. This feature provides new opportunity for the use of volume grating-based
devices in applications requiring high spectral selectivity.
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