
Optical phased array power penalty
analysis

Jing M. Tsui and Charles Thompson
University of Massachusetts-Lowell, Lowell, MA 01854

Jing Tsui@student.uml.edu

Jeffrey M. Roth
MIT Lincoln Laboratory, Lexington, MA 02420

Abstract: This paper investigates the power penalty from optical phased
arrays used for wide-angle beam steering of optical communication signals.
The analysis studies the effect of aperture size, data rate,modulation
format, and diffraction angle on digital lightwave signals. The results show
increasing power penalties for larger angles, aperture sizes, and data rates.
At a 10◦ steering angle, 10-cm aperture, and for both on-off keying (OOK)
and differential phase-shift keying (DPSK) the 2.5-Gb/s power penalty is
approximately 1.0 dB, while at 10 Gb/s the penalty increasesto 7.7 dB for
OOK and 7.8 dB for DPSK.
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1. Introduction

Future generations of free-space optical communication systems may employ optical phased
array (OPA) devices to enable fast, all-electronic beam-steering with smaller size and lower
weight compared to mechanical methods. Research in the pastdecade has demonstrated im-
provements in OPA performance, size, and controllability which makes them more suitable for
free-space optical communication system applications [1].

An OPA typically utilizes a liquid crystal. When no voltage isapplied a laser beam travels
through the material without being diffracted. A voltage pattern applied across the OPA pixels
in a ramp or sawtooth shape, creates a phase profile analogousto that of a thin grating. This
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grating allows a laser beam to be precisely diffracted to a desired angle. Moreover, rewriting
the phase ramp allows the OPA to be dynamically programmed. The light beam can therefore
be continuously steered to any angle in the OPA’s field of view. These features of an OPA may
provide free-space communication systems with fast, lightweight, and efficient beam scanning
capabilities. Furthermore, OPAs also have wide bandwidths, consume low power and could
enable space-division multiple access communications [2]due to their fast steering capability.

OPAs are not true-time delay devices, however, and therefore impart dispersion onto a com-
munication signal [3]. This paper studies how these temporal distortions impact the bit-error
performance of high-rate optical communication systems.

2. Physical analysis for diffraction gratings

This section provides a theoretical analysis of an OPA. We define the source point to be located
at the pointPo and the observation point to be located atP. A grating plane with an aperture
is placed between these two points. The path between the source pointPo, the aperture, and
observation pointP is shown in Fig. 1. The aperture is located in thex−y plane and has an area
equal toA. Q is a point located in the aperture andO is the origin of thex−y plane. The theory
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Fig. 1. Diffraction through a general aperture.

of Fraunhofer diffraction will be used to calculate the complex amplitude of the transmitted
light intensity at pointP. We also denote the first two direction cosines by(lo,mo) and(l, m).

lo =
xo

|~r′s|
, l =

x

|~r′o|
; mo =

yo

~|r′s|
, m =

y

|~r′o|
(1)

where~r′s = (xo, yo, zo),
~r′o = (x, y, z), and ~s = (ξ , η , 0). The Fraunhofer diffraction amplitude

is governed be the integral [4]

Û(p,q) = C
∫ ∫

A
e−ik(pξ+qη)dξ dη (2)

wherek = 2π
λ is the incident wavenumber. The surface areaA is defined by the aperture andC

is a function of the positions of the source and observation points. The parameters are defined
asp = l − lo andq = m−mo. For the case of a screen that contains a large number of identical
and similarly oriented apertures, the light distribution in the Fraunhofer diffraction is [5]

Û(p,q) = C∑
n

e−ik(pξn+qηn)
∫ ∫

A
e−ik(pξ+qη)dξ dη . (3)

#77687 - $15.00 USD Received 7 Dec 2006; revised 12 Feb 2007; accepted 7 Mar 2007; published 13 Apr 2007

(C) 2007 OSA 16 Apr 2007 / Vol. 15,  No. 8 / OPTICS EXPRESS  5180



The diffraction grating is represented in Fig. 2(a). The grating may be used to produce a peri-
odic variation of amplitude, phase, or a combination of bothat a fixed frequency. The thickness
of the diffraction grating is considered comparable to the light’s wavelength. The transmission
function will be given byT (ξ ,η). The incident light with input angleθi goes into the diffrac-
tion grating and comes out on the other side of the grating diffracted at a different angle. The
diffraction is caused by different orders of diffraction which we will discuss later. Here we
focus on obtaining the output intensity of the diffraction grating.
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Fig. 2. Diffraction grating (a) and diffraction angles (b)

Let us consider a one-dimensional grating withN parallel grooves of arbitrary profile. Let
d be the distance corresponding to one period in theξ direction andD be the total length of
the grating such thatD = Nd. We setlo = sinθi, l = sinθo, p = l − lo = sinθo − sinθi and
q = 0. The amplitude atP is obtained from Eqn.(3), and the integrand is multiplied bythe
transmission functionT obtained for a single period. In this case, we haveξn = nd, ηn = 0,
wheren = 0, 1, ..., N −1. Substituting the value ofξn andηn into Eqn.(3),we obtain

U(p) = Û(p,0) =
1− e−iNkd p

1− e−ikd p Uo(p) (4)

where, Uo(p) = C
∫

A
T (ξ )e−ikpξ dξ (5)

Hence, the intensityI of the light is equal to|U(p)|2.

I(p) = |U(p)|2 =
1−cos(Nkd p)

1−cos(kd p)
Io(p) (6)

whereIo(p) = |Uo(p)|2. Using the trigonometric identity cos(2x) = 1− sin2(x), the equation
for I(p) is simplified to Eqn. (7).

I(p) =





sin
(

Nkd p
2

)

sin
(

kd p
2

)





2

Io(p). (7)
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For I(p) to reach its maximum value,kd p
2 must be a multiple ofπ, which iskpd = m2π (m =

0,±1,±2, ...). Therefore,p is

p =
2mπ
kd

=
mλ
d

, (8)

where the integerm is the diffraction order. HenceI(p) has maximum amplitude ofN2Io

(

mλ
d

)

.

For two neighboring grooves shown in Fig. 2(b), the path difference between two pathsCA and
BD is CA−DB = d(sinθo − sinθi) = d p, whereθi is the incident angle andθo is the output
angle. Therefore, the diffraction angle for each diffraction order can be calculated using Eqn.
(9) which is known as grating equation.

sinθm −sinθi =
mλ
d

(9)

Substituting Eqn.(8) andk = 2π
λ into Eqn. (5), we obtain the functionUo. Note thatUo can also

be viewed as the coefficients of the Fourier Series (FS) of transmission functionT (ξ ) and the
integerm is the order of spatial harmonic.

Uo(
mλ
d

) =
1
d

∫ d/2

−d/2
T (ξ )e−i2π m

d ξ dξ (10)

3. Phase function of an optical phased array

In this section, we introduce the analysis of the OPA. The transmission function of an OPA
diffraction grating has a phase which varies periodically in space. Liquid crystal transmission
gratings can be used as OPAs. The diffraction angle can be changed by applying a different
voltage pattern to the OPA.

ζ

h

d' d ξ

β

Fig. 3. Phase function of OPA

In an OPA, the transmission functionT (ξ ) is defined asT (ξ ) = e− j2πϕ(ξ ), whereϕ(ξ ) is the
phase function. For each period, the phase angle varies between 0 to 2π. The variation of one
period is defined asϕ(ξ ) = (k1−k)ζ (ξ ) = 2π(n−1)

λ ζ (ξ ), wherek1 = 2πn/λ , andn is refractive
index of the grating. The shape of the phase functionζ (ξ ) is shown in Fig. 3. We defineh as the
height of the phase function,d as the width andd′ as the point where the slope of the function
changes. Also we define the parametera asa = d′

d . The phase shape functionζ (ξ ) is defined
in Eqn.(11).

ζ (ξ ) =

{

hξ
d′ 0≤ ξ ≤ d′

− hξ
d−d′ +

hd
d−d′ d′ ≤ ξ ≤ d

(11)
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Now, we can obtain the transmission functionT (ξ ) for the OPA.

T (ξ ) = e jϕ(ξ ) =







ei2π(n−1) h
λ

ξ
d′ 0≤ ξ ≤ d′

e
−i2π(n−1) h

λ

[

ξ
d−d′

− d
d−d′

]

d′ ≤ ξ ≤ d
(12)

Substituting the transmission function Eqn. (12) into Eqn.(10), we can approximate the solution
for the complex field amplitude of a single element. After integration with respect toξ and

simplification by we obtain the far-field approximation forU (OPA)
o .

U (OPA)
o

(

mλ
d

)

=
1
d

[

∫ d′

0
e
−i2π

[

m
d −

(n−1)h
λd′

]

ξ
dξ + e

i2π (n−1)hd
λ (d−d′)

∫ d

d′
e
−i2π

[

m
d +

(n−1)h
λ (d−d′)

]

ξ
dξ

]

(13)

=
1
d





e
−i2π

[

md′
d −

(n−1)h
λ

]

−1

−i2π
[

m
d − (n−1)h

λd′

] +
e−i2πm − e

−i2π
[

md′
d −

(n−1)h
λ

]

−i2π
[

m
d + (n−1)h

λ (d−d′)

]



 ,

Using the relationd′ = ad, and 1
d−d′ = a

ad(1−a) . Hence,Eq. (13) can be further simplified to

U (OPA)
o

(

mλ
d

)

= a





e
−i2π

[

am−
(n−1)h

λ

]

−1

−i2π
[

am− (n−1)h
λ

] +
e−i2πm − e

−i2π
[

am−
(n−1)h

λ

]

−i2π
[

am+ (n−1)ha
λ (1−a)

]



 . (14)

The intensity of the light through the OPA grating can now be calculated using Eqn.(7).

I(OPA)

(

mλ
d

)

=





sin
(

N mλk
2

)

sin
(

mλk
2

)





∣

∣

∣

∣

U (OPA)
o

(

mλ
d

)∣

∣

∣

∣

2

(15)

4. Blazed grating

In our application, we wish to maximize the output of the OPA at the first-order diffraction
mode (spatial harmonicm = 1) and minimize the output from other modes. This means that the
diffraction efficiency for the light intensity of mode 1 (m = 1) is 100%, and the other modes
become zero. To do so, the phase shape functionζ (ξ ) is modified to the case ofa = 1, for which
β is 90o. This type of diffraction grating is called a blazed grating. For a blazed grating, the
shape of the phase function takes the form of a right triangleand the second term of Eqn.(12)
will vanish. In our development, we will define the limits of integration as[−d/2 ,d/2]. The
equation for the intensity of light now becomes

U (b)
o

(

mλ
d

)

=
sinπ

[

m− (n−1)h
λ

]

π
(

m− (n−1)h
λ

) , (16)

I(b)
o

(

mλ
d

)

=





sin
(

N Mλk
2

)

sin
(

mλk
2

)





∣

∣

∣

∣

U (b)
o

(

mλ
d

)∣

∣

∣

∣

2

. (17)

To obtain the maximum value forIo, we need to choose the correct value ofh. Io has maximum
value in amplitude of 1, whenm− (n−1)h

λ = 0. Therefore, theh must has the value of

h =
mλ

n−1
. (18)
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For example, if we wanted the first order diffraction,m = 1, to have maximum output power
and other orders to have zero output, then the value for the height is h = λo

n−1. The termλo

refers to the center wavelength. The frequency response of the OPA for a plane wave can be
calculated by modifying Eqn.(17) by lettingp = λo

d andk = 2π
λ .

I(b)(λ ) =





sin
(

Nπm λo
λ

)

sin
(

πmd λo
λ

)





2
∣

∣

∣
U (b)

o (λ )
∣

∣

∣

2
(19)

U (b)
o (λ ) =

sin
(

π(1− λo
λ )

)

π(1− λo
λ )

(20)

The integerN is the number of apertures (or elements) for a given sized OPA. The value ofN
varies by the center wavelengthλo, the diffracted angleθ1, and the effective diameter of the
OPA (Nd). For fixed values of the center wavelengthλo and the OPA diameter, the value of
N increases as the diffracted angle increases. Table 1 shows the number of aperturesN for the
OPA per centimeter and the single aperture lengthd for a center wavelength ofλ0 = 1565 nm.
d is calculated by Eqn. (9) with nomal incident angle (θi = 0).

Table 1. OPA: Number of Apertures and the value ofd

Diffracted Angle
θ1 1o 5o 10o

N / cm 110 556 1110
d (µm) 89.67 17.96 9.01

In reality, the input beam will be a three-dimensional Gaussian beam, however, it is more
straight forward to analyze one-dimentional optical phased array. Therefore, we will consider
a two-dimentional planar wave as the input and the output. A Gaussian beam has a range of
spatial wavenumbers (k), and a small variance of input angles in the wave front. The length of

 0  20  40  60  80  100  120

Aperture Number

Optical Phased Array

Fig. 4. Treatment used to approximate Gaussian beam profiles

one aperture is comparable with the optical wavelength which is much smaller than the width of
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the Gaussian beam. A single aperture has a wide spectral response. The Gaussian beam can be
approximated by discretizing the Gaussian beam as shown in Fig. 4. The discretized step size
is the length of an apertured. For each aperture, the input can be approximated by a piece-wise
plane wave with varying intensity which approximates a Gaussian shape. The spectral response
for a Gaussian beam is given in Eqn. (21 ) by modified Eqn. (3)

U (b)(λ ) = C
N

∑
n j=1

[

e−in j2π λo
λ ×U (b)

o (λ )×UG(n j)
]

, (21)

whereUG is the normalized amplitude of the Gaussian beam with variancew2
d , andn j is indexed

through all the apertures.

UG(n j) = e
−

(

n j−
N
2

wd

)2

(22)

The spectral responses for the OPA at varying diffraction angles,θo, for a Gaussian beam are
shown in Figs. 5 and 6 as functions of wavelengthλ . The center wavelengthλo for all the cases
is 1565 nm. The diameter of the OPA is chosen to be 1 cm and 10 cm.From Fig 5, the main
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10o

Fig. 5. The frequency response as a function ofλ . For different angles of incidence and a
fixed OPA apertureDopa = 1 cm.

lobe width of the spectral response for the smaller aperturediameter (Dopa = 1 cm) is much
wider than that for the aperture diameterDopa = 10 cm. For example, the 3-dB bandwidth of
spectral response forDopa = 1 cm is 20 nm for a diffraction angle of 1o. The 3-dB bandwidth is
2 nm forDopa = 10 cm with the same diffracted angle which is 10 times less than the case when
Dopa = 1 cm. Thus, the 3-dB bandwidth decreases as the diffraction angle increases. The slope
of the side-lobes decreases faster with larger diffractionangle. From the information given by
Table 1, the 3-dB bandwidth decreases as the number of total aperture increases.
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Fig. 6. The frequency response as a function ofλ . For different angles of incidence and a
fixed OPA apertureDopa = 10 cm

5. Data transmission simulation

In this section, we review the components of an optical communication system for simulating
the bit-error rate (BER). The system includes a laser source, modulator, OPA, preamplified
receiver, detector and demodulator. The configuration of the system is shown in Fig 7. In our
simulation, we examine the BER at bit-rates of 2.5 Gb/s and 10Gb/s, and compute the power
penalty of the OPA for different parameters.

PRBS

Data Pattern

Noise

ASE

Optical

Modulator

OOK / DPSK )

 

(

OPA

Preamplified

Receiver

DetectorDemodulatore
+ -

+

|a|
2

opa(t)

s(t)

r(t)

Error Rate

Laser

Source

Fig. 7. Configuration for the network simulation

The source generates a Gaussian pulse train which forms the pattern of a 223−1-bit pseudo-
random bit sequence. The probability for the occurrence of ones and zeros is equivalent (50%).
For each bit duration, the center of the Gaussian pulse is located in the center of the bit period.
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The width of the pulse is one-third the bit duration. The amplitude of the Gaussian pulse is
varied to change the average power for the one bit. We also examine the BER for two types of
modulation formats: on-off keying (OOK) and differential phase-shift keying (DPSK) [7]. For
both modulations we use return-to-zero signaling. For OOK,the zero bit has amplitude of zero,
and the one bit has an amplitude greater than zero. For DPSK, the phase difference between
one and zero isπ.

The impulse spectral response of the OPA is pre-calculated using Eqn. (21) for different
diffracted angles and OPA diameters. A bandwidth-limited optically preamplified receiver with
a gain parameterG is used as the optical receiver. Additive white Gaussian (AWG) noise is
added to the received signal. The total noise is dominated byamplified spontaneous emission
noise (ASE) [8] [9]. The variant of ASE noise for two polarizations is calculated in Eqn. (23),

σ2 = 2×nsp ×h× f ×Bo × (G−1), (23)

wherensp is the spontaneous emission factor (required to≥ 1); h is Planck’s constant;f is the
central optical frequency which equalsc/λ ; Bo is the amplifier bandwidth; andG is the ampli-
fier gain. After the photodetector, the received signal isr(t) = |G [s(t)∗opa(t)]+n(t)|2,where
s(t) andn(t) is transmitted signal and the noise, respectively.opa(t) is the impulse response
of the OPA whose Fourier transform isU (b)(λ ). For the OOK simulations, maximum likeli-
hood detection is used to detect the received signals as a oneor zero bit. Because of the square
law detection in the receiver, the noise distribution for zero and one are changed. The optimal
threshold is computed based on the new noise distribution for zero and one for different trans-
mitted powers. The signals are demodulated based on their modulation type. The demodulated
signals are compared with the transmitted pattern to calculate the bit-error rate.

6. BER simulation results

The data transmission simulations were carried out for an operating wavelength of 1565 nm,
and data rates of 2.5 Gb/s and 10 Gb/s. In the simulation, we choose the first order diffracted
angles to be 1o, 5o, 10o. The total number of elements is calculated by the diffracted angles
and the OPA size. The optical amplifier gainG is 27 dB, the amplifier bandwidthB0 is 3.45
GHz for the 2.5-Gb/s system and 13.6 GHz for the 10-Gb/s system. The OPA aperture diameter
Dopa is chosen to be 1, 2, and 10 cm. The bit-error rate results are shown in Figs. 8 and 9.

Figure 8 shows the results for a 2.5-Gb/s simulation. The graphs labeled “OOK 2.5G” and
“DPSK 2.5G” are the simulation results without the OPA whichmatch the quantum-noise lim-
ited BER for the given preamplified direct detection system with the corresponding modulation
format. From the results, the BER with the OPA at a 1o first order diffracted angle is the same
as the BER without the OPA. The power penalty for the OPA with a5o diffraction angle is less
than 0.5 dB, and the power penalty for the OPA with 10o is 1.5 dB for both modulation formats.

Figure 9 shows the results for the 10-Gb/s simulation. “OOK 10G” and “ DPSK 10G ” are
again the quantum-noise limited simulation results without the OPA for modulation formats
OOK and DPSK, respectively. The power penalty for the OPA with 1o and 5o diffracted angles
and aperture diameterD ≤ 2 cm is very small and can be neglected for both types of modulation.
The power penalty at 5o with a 10-cm diameter is significantly increased to approximately 3
dB for OOK and DPSK. The power penalty for larger diffractionangles such as 10o exceeds
that of smaller diffraction angles (≤ 5o) with the same aperture diameter. In the worst case, the
power penalty for 10o with D = 10 cm is 8 dB for both modulation formats. The simulation
results also show that the power penalties for OOK and DPSK closely match each other for
the simulation parameters used here. As expected, the simulation results show that the power
penalty increases with data rate.
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