Library Test Collection (test for batch upload)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 4 of 4
  • Item
    Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines
    (Particle and Fibre Toxicology, 2013-08-22) Khatri, Madhu; Bello, Dhimiter; Pal, Anoop K; Cohen, Joel M; Woskie, Susan; Gassert, Thomas; Lan, Jiaqi; Gu, April Z; Demokritou, Philip; Gaines, Peter
    Background: Photocopiers emit nanoparticles with complex chemical composition. Short-term exposures to modest nanoparticle concentrations triggered upper airway inflammation and oxidative stress in healthy human volunteers in a recent study. To further understand the toxicological properties of copier-emitted nanoparticles, we studied in-vitro their ability to induce cytotoxicity, pro-inflammatory cytokine release, DNA damage, and apoptosis in relevant human cell lines. Methods: Three cell types were used: THP-1, primary human nasal- and small airway epithelial cells. Following collection in a large volume photocopy center, nanoparticles were extracted, dispersed and characterized in the cell culture medium. Cells were doped at 30, 100 and 300 µg/mL administered doses for up to 24 hrs. Estimated dose delivered to cells, was ~10% and 22% of the administered dose at 6 and 24 hrs, respectively. Gene expression analysis of key biomarkers was performed using real time quantitative PCR (RT-qPCR) in THP-1 cells at 5 µg nanoparticles/mL for 6-hr exposure for confirmation purposes. Results: Multiple cytokines, GM-CSF, IL-1ß, IL-6, IL-8, IFN?, MCP-1, TNF-a and VEGF, were significantly elevated in THP-1 cells in a dose-dependent manner. Gene expression analysis confirmed up-regulation of the TNF-a gene in THP-1 cells, consistent with cytokine findings. In both primary epithelial cells, cytokines IL-8, VEGF, EGF, IL-1a, TNF-a, IL-6 and GM-CSF were significantly elevated. Apoptosis was induced in all cell lines in a dose-dependent manner, consistent with the significant up-regulation of key apoptosis-regulating genes P53 and Casp8 in THP-1 cells. No significant DNA damage was found at any concentration with the comet assay. Up-regulation of key DNA damage and repair genes, Ku70 and Rad51, were also observed in THP-1 cells, albeit not statistically significant. Significant up-regulation of the key gene HO1 for oxidative stress, implicates oxidative stress induced by nanoparticles. Conclusions: Copier-emitted nanoparticles induced the release of pro-inflammatory cytokines, apoptosis and modes cytotoxicity but no DNA damage in all three-human cell lines. Taken together with gene expression data in THP-1 cells, we conclude that these nanoparticles are directly responsible for inflammation observed in human volunteers. Further toxicological evaluations of these nanoparticles, including across different toner formulations, are warranted.
  • Item
    The Precautionary Principle in Environmental Science
    (Environmental health perspectives, 2001-11) Kriebel, David; Tickner, Joel; Epstein, Paul; Lemons, John; Levins, Richard; Loechler, Edward L.; Quinn, Margaret; Rudel, Ruthann; Schettler, Ted; Stoto, Michael
    Environmental scientists play a key role in society's responses to environmental problems, and many of the studies they perform are intended ultimately to affect policy. The precautionary principle, proposed as a new guideline in environmental decision making, has four central components: taking preventive action in the face of uncertainty; shifting the burden of proof to the proponents of an activity; exploring a wide range of alternatives to possibly harmful actions; and increasing public participation in decision making. In this paper we examine the implications of the precautionary principle for environmental scientists, whose work often involves studying highly complex, poorly understood systems, while at the same time facing conflicting pressures from those who seek to balance economic growth and environmental protection. In this complicated and contested terrain, it is useful to examine the methodologies of science and to consider ways that, without compromising integrity and objectivity, research can be more or less helpful to those who would act with precaution. We argue that a shift to more precautionary policies creates opportunities and challenges for scientists to think differently about the ways they conduct studies and communicate results. There is a complicated feedback relation between the discoveries of science and the setting of policy. While maintaining their objectivity and focus on understanding the world, environmental scientists should be aware of the policy uses of their work and of their social responsibility to do science that protects human health and the environment. The precautionary principle highlights this tight, challenging linkage between science and policy.
  • Item
    Skin Exposure to Isocyanates: Reasons for Concern
    (Environmental health perspectives, 2007-03) Bello, Dhimiter; Herrick, Christina A.; Smith, Thomas J.; Woskie, Susan R.; Streicher, Robert P.; Cullen, Mark R.; Liu, Youcheng; Redlich, Carrie A.
    Isocyanates (di- and poly-), important chemicals used worldwide to produce polyurethane products, are a leading cause of occupational asthma. Respiratory exposures have been reduced through improved hygiene controls and the use of less-volatile isocyanates. Yet isocyanate asthma continues to occur, not uncommonly in settings with minimal inhalation exposure but opportunity for skin exposure. In this review we evaluate the potential role of skin exposure in the development of isocyanate asthma.
  • Item
    Acute and Chronic Respiratory Effects of Sodium Borate Particulate Exposures
    (Environmental health perspectives, 1994-11) Wegman, David H.; Eisen, Ellen A.; Hu, Xiaohan; Woskie, Susan R.; Smith, Ralph G.; Garabrant, David H.
    This study examined work-related chronic abnormality in pulmonary function and work-related acute irritant symptoms associated with exposure to borate dust in mining and processing operations. Chronic effects were examined by pulmonary function at the beginning and end of a 7-year interval. Time-specific estimates of sodium borate particulate exposures were used to estimate cumulative exposure during the study interval. Change in pulmonary function over the 7 years was found unrelated to the estimate of cumulative exposure during that interval. Exposure-response associations also were examined with respect to short-term peak exposures and incidence of five symptoms of acute respiratory irritation. Hourly measures of health outcome and continuous measures of particulate exposure were made on each subject throughout the day. Whenever a subject reported one of the irritant symptoms, a symptom intensity score was also recorded along with the approximate time of onset. The findings indicated that exposure-response relationships were present for each of the specific symptoms at several symptom intensity levels. The associations were present when exposure was estimated by both day-long and short-term (15-min) time-weighted average exposures. Associations persisted after taking account of smoking, age, and the presence of a common cold. No significant difference in response rate was found between workers exposed to different types of sodium borate dusts.